environments, especially since many of these sites were in relatively pristine locations. The higher percentage of creek habitat with fair or poor conditions may also reflect, in part, the relatively greater effect of anthropogenic runoff into these smaller water bodies due to their proximity to upland sources and their lower dilution capacity.

Comparison of the state's overall water quality condition on an annual basis indicated very little change over the six years sampled by SCECAP to date (Figure 3.2.7). This is surprising since the state's estuarine habitat was altered considerably by increased rainfall in 2003 and 2004 based on the changes in the proportion of the state represented by the various salinity zones (Figure 3.2.1). For all years, about 80% or more of the state's estuarine waters rank as good in quality using the SCECAP criteria, and generally less than 5% of the estuarine waters ranked as poor in quality. We anticipated that the increased rainfall experienced during 2003-2004 might have an impact on the state's overall estuarine water quality. but the resulting data did not confirm this. Although some of the component parameters did show evidence of considerable change, the actual concentrations observed among the various sites sampled in a given year, combined with the mitigating effects of those parameters that did not show much change, are the probable reasons for a lack in major changes in the integrated water quality index.

3.3 Sediment Quality

Sediment Composition

The composition of marine sediments can affect the structure of benthic communities, the exchange rates of gases and nutrients between the water column and seafloor, and the bioavailability of nutrients and contaminants to resident fauna (Gray, 1974; Graf, 1992). In general, muddier sediments (those with more silt and clay) tend to host a different set of species, reduce the movement of gasses and nutrients, and retain more contaminants than sandier sediments.

During the 2003-2004 monitoring period, sediments in open water habitats were on average 19.6% silt/clay while sediments in tidal creek habitats were 30.4% silt/clay, a difference that was significant (p = 0.013). Within each habitat type, the percent

silt/clay was highly variable, with open water stations varying from 0.7-94.7% and tidal creek stations varying from 2.0-97.8%. The sediments at one open water station (2.0%) and four tidal creek stations (7.0%) had greater than 80% silt/clay (Figure 3.3.1). These values are similar to previous study periods (Van Dolah *et al.*, 2002a, 2004a).

Sediment Total Organic Carbon

Total organic carbon (TOC) represents a measure of the amount of organic material present in sediments. At very low TOC levels, little food is available for consumers resulting in a low biomass community; at very high TOC levels, enhanced sediment respiration rates lead to oxygen depletion and accumulation of potentially toxic reduced chemicals. Hyland *et al.* (2000) found that TOC levels below 0.5 mg/g (0.05%) and above 30 mg/g (3.0%) were related to decreased benthic abundance and biomass.

The TOC content of open water sediments averaged 0.8% while tidal creek habitats averaged 1.2%, a difference that was significant (p = 0.048). The TOC of open water habitats varied from 0.03% to 5.5% and that of tidal creeks varied from 0.05% to 5.5%. Based on the criteria in Hyland *et al.* (2000), the sediments were impaired with respect to TOC at 20% of open water habitats (14% too low, 6% too high) and 15% of tidal creek habitats (3% too low, 12% too high; Figure 3.3.1). These values are similar to previous surveys (Van Dolah *et al.*, 2002a, 2004a). The tendency of open water habitats to be characterized by lower TOC levels than tidal creek habitats likely reflects their greater distance from terrestrial sources of organic material.

Porewater Ammonia

Total ammonious nitrogen (TAN) provides a measure of the concentration of ammonia, a highly reduced and potentially toxic form of nitrogen, in marine sediments. Sources of ammonia include terrestrial runoff, atmospheric deposition and bacterial activity (nitrate reduction and ammonification), many of which are increasingly impacted by human activities, resulting in greater nitrogen loads in coastal environments (Driscoll *et al.*, 2003).

The median porewater ammonia concentration was 1.9 mg/L in open water habitats and 2.1 mg/L

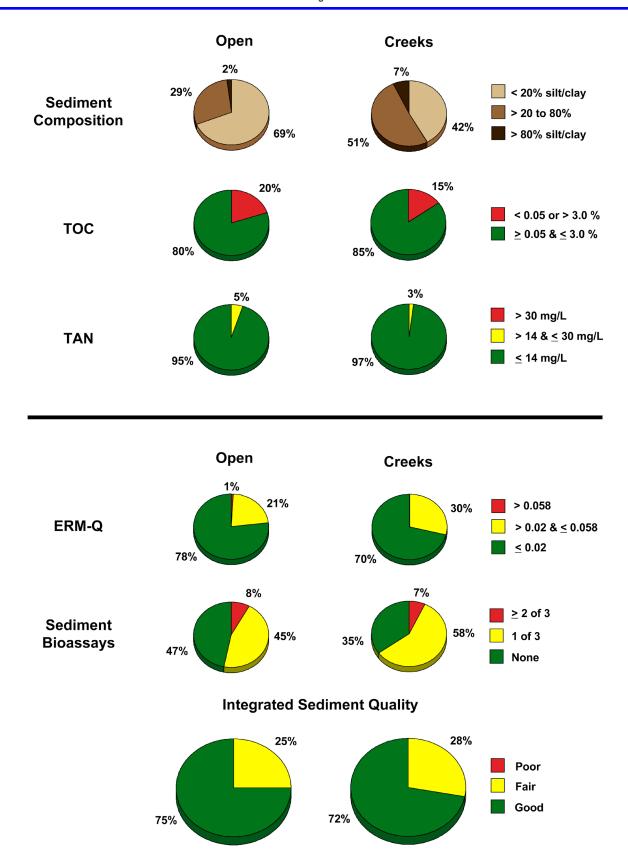


Figure 3.3.1. Comparison of the percent of the state's coastal habitat represented by various sediment quality conditions and integrated sediment quality scores.